The generator matrix

 1  0  1  1  1  1  1 X+6  1  1  1 2X  1  1  1  0  1  1  1 2X  1  1  1 X+6  1  1  1  1  1  1  3 X+3  1  1  1 2X+3  1  1  1  1  3  1  1  X  1  1  1 2X+3  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0 X+3  3  X 2X 2X+3  1  1  1  1  1  1  1  1
 0  1 2X+7  8 X+1 X+6 X+5  1 2X  7 2X+8  1  0 2X+7  8  1 2X X+1 X+5  1 X+6  7 2X+8  1  3 X+3 2X+4 X+4  2 2X+2  1  1 2X+3  4 X+2  1  3 2X+4  2 X+3  1 X+4 X+2  1 2X+6  4 2X+2  1  0  3 X+6 2X+7 2X+4 X+4 X+3 X+1  2  8 X+5 X+2 2X+3 2X+6  7  4 2X+8 2X+2  1  1  1  1  1  1  6  6  X  X 2X 2X+6  6 X+6
 0  0  6  0  3  6  3  3  3  0  6  6  3  3  6  3  6  0  0  0  0  6  3  6  6  3  0  6  3  0  6  0  0  3  6  3  3  3  6  6  3  0  0  0  0  6  3  6  6  0  3  0  6  3  0  6  0  3  6  3  6  3  3  0  0  6  6  3  0  6  3  0  0  3  6  3  0  6  6  0

generates a code of length 80 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 157.

Homogenous weight enumerator: w(x)=1x^0+378x^157+156x^159+1350x^160+80x^162+54x^163+162x^166+6x^186

The gray image is a code over GF(3) with n=720, k=7 and d=471.
This code was found by Heurico 1.16 in 0.212 seconds.